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Project Background &

Nuclear fusion — the energy of the future!

m Must produce and contain an extremely hot and dense plasma

m Magnetic Confinement Fusion (MCF): toroidal circulation
m Inertial Confinement Fusion (ICF): spherical compression

m Modern designs require enriched Hydrogen fuel of two varieties:

m Deuterium (3H) — abundant in naturally-sourced water.
m Tritium (3H) — extremely rare, but can be produced in-reactor.




Problem Description

Tritium breeding blankets convert neutron radiation to tritium fuel:
In+8Li — 3H + 4He i+l — 3H 4 4He + (n

Tritium breeding ratio (TBR) = fuel bred / fuel consumed
m Depends on numerous geometric and material parameters.

m Evaluated precisely by OpenMC neutronics simulation Paramak,
but is computationally expensive.

Our Challenge:

Produce a fast TBR function that strongly approximates Paramak,
making use of the latest in surrogate modelling techniques.



Data Generation .

We produced training and test datasets by uniform random sampling
over the 7 discrete and 11 continuous parameters of Paramak.

Paramak deployed on
UCLs Hypatia cluster:

m Generated 1M
samples.

m 27 days of runtime.

2 classes of runs:

m All parameters free.

m Discrete fixed,
continuous free.
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Methodology &

Conventional regression task — search for a cheap surrogate ?(x) that
minimizes dissimilarity with an expensive function f(x):

m Regression performance: mean absolute error, o of error, R?, Rgdj_
m Computational complexity: training & prediction time / sample

2 approaches for surrogate training:
Decoupled — trains models from previously generated samples.

Adaptive — repeats sampling & model training, increases sampling
density in low-performance regions.



Decoupled Approach



Compared 9 state-of-the-art surrogate families:

m Support vector machines, B Kk nearest neighbors,

m Gradient boosted trees, m Artificial neural networks (MLP),
m Extremely randomized trees, m Inverse distance weighting,

m AdaBoosted decision trees, m Radial basis functions.

m Gaussian process regression,

Performed 4 experiments:

Hyperparameter tuning (simplified) — Bayesian optimization,
discrete features fixed & withheld.

Hyperparameter tuning — same as #1 but with all features.
Scaling benchmark — increase training set size.
Model comparison — train surrogates for practical use.



Experiments 1 & 2: Hyperparameter Tuning &

Experiment 1, slice (a) Experiment 1, slice (b) Experiment 1, slice (c)

e

RiF

- m Plots show fyreq. Vs. R? for 20 best surrogates
' per family (top left < fastest, most accurate).
.| = Omitting discrete features yields only a
- negligible improvement in performance.

m Overall dominated by tree-based surrogates
(GBTs, ERTs) and neural networks.

Experiment 2



Experiment 3: Scaling Benchmark &

m We observe a hierarchy. m Instance-based surrogates
m Best-performing families from (KNN, IDW) train trivially but
the previous experiments also have complex lookup.
scale the best in tyreq.. m Neural networks show inverse
m More samples: neural networks scaling due to parallelization.

outperform tree-based models.

Regression performance Training time / sample Prediction time / sample



Experiment 4: Model Comparison &

m Trained 8 models for practical use.

m Plots show true vs. predicted TBR by
Models 1, 2 & 4, coloured by density.

m Model 1 — best regression performance:

m ANN (4-layer MLP), 500K samples.

B R?2=0.998, o =0.013,

B tyeq = 1.124ps, 6916416 faster.
m Model 2 — fastest prediction:’

m ANN (2-layer MLP), 500K samples.

m R?=10.985, o = 0.033,

B foeq = 0.898 ps, 8659 251 x faster.
m Model 4 — smallest training set:*

m GBT, 10K samples.

m R?=0.913,0=0.072,

B tyeq = 6.125ps, 1269777 % faster.

T with acceptable regression performance.




Adaptive Approach



Adaptive Sampling: Theory &

How can we take advantage of
surrogate information content
during training to reduce Inkel ) samples X
sample quantity?

Quality-Adaptive Surrogate

Sampling (QASS)

iE :aluate IM D:r eaI: i Add top-ranked X;j' to Xi.
We developed a new technique: e . i
Construct surrogate quality BRG] e and
distribution by nearest- t
nelg h bO ur | nte rpO | atl on. Evaluate quality metric: Perform MCMC on W(X),
W(X) [STBR,TBR] obtain n' samples Xj'

Draw candidate samples
by quality using MCMC.

NoJ
Include samples with
greatest separation from es 0= Repr Error san(AE T RVISE)
nelg hbou rs i CDM = Crowding Distance Metric

Repeat!



Application on Toy Theory &

Toy functional TBR theory with wavenumber n, and qualitatively
comparable ANN performance to Paramak:

1 .
TBR = 0 Z 1 +sin(27tn(x; — 1/2))]

iec (where C enumerates all continuous variables)

Evaluation set:
m Adaptive samples
m Generated during runtime
Validation set:
m Uniform random samples
m Generated independently

Placebo comparison — incremental
. 0
uniform-random samples, no MCMC. ° Contimons prsneter 7



Adaptive Sampling: Results &

Varied Sampling Scheme for 100000 Initial, 100 Incremental Samples

—— MAE -- MCMC samples
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60% decrease in MAE for validation set (dashed)
Equivalently, 6% decrease in samples needed for same accuracy



Adaptive Sampling: Results

Varied Increment for 10000 Initial Samples

0.035 —— MAE -- 100 new samples per iter

------ E_MAE -- 100 new samples per iter
0.030 —— MAE -- 300 new samples per iter
—————— E_MAE -- 300 new samples per iter
—— MAE -- 500 new samples per iter

0.025 .
e E_MAE -- 500 new samples per iter
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Fewer incremented samples can lead to better accuracy!
But depends on initial samples, specific model — further study needed.



Conclusion .

Decoupled approach:
m Tuned and compared surrogates from 9 state-of-the-art families.
m Found heuristic: GBTs for < 10* samples, ANNs for > 10° samples.

m Fastest found surrogate predicts TBR with standard deviation of
error 0.033 in 0.898 ps, which is 8 - 10°x faster than Paramak.

m While this used 500K samples, we found surrogates with
comparable properties with as little as 10K samples.

Adaptive approach (on toy theory):
m New theoretical approach QASS developed, based on MCMC.
m 60% decrease in evaluation MAE demonstrated.
m 6% decrease in expensive TBR samples needed.
m Strong potential for further reduction via hyperparameter tuning.

All presented methods portable —> can be used as cheap
approximation of any simulation or black box function.



Than u for listening!

Petr Manek ...t petr.manek.19@ucl.ac.uk
Graham Van Goffrier ............ graham.vangoffrier.190@ucl.ac.uk

Further reading:
m Single page abstract (available online).

m Journal article, currently in internal pre-submission review (available online):
Fast Regression of the Tritium Breeding Ratio in Fusion Reactors.

m Industry group project final report (available online).

m All models, plots, training data, source code and technical documentation.
https://github.com/ucl-tbr-group-project
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