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Project Background

Nuclear fusion – the energy of the future!

Must produce and contain an extremely hot and dense plasma
Magnetic Confinement Fusion (MCF): toroidal circulation
Inertial Confinement Fusion (ICF): spherical compression

Modern designs require enriched Hydrogen fuel of two varieties:
Deuterium (2H) – abundant in naturally-sourced water.
Tritium (3H) – extremely rare, but can be produced in-reactor.



Problem Description

Tritium breeding blankets convert neutron radiation to tritium fuel:
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Tritium breeding ratio (TBR) = fuel bred / fuel consumed

Depends on numerous geometric and material parameters.

Evaluated precisely by OpenMC neutronics simulation Paramak,
but is computationally expensive.

Our Challenge:

Produce a fast TBR function that strongly approximates Paramak,
making use of the latest in surrogate modelling techniques.



Data Generation

We produced training and test datasets by uniform random sampling
over the 7 discrete and 11 continuous parameters of Paramak.

Paramak deployed on
UCL’s Hypatia cluster:

Generated 1M
samples.

27 days of runtime.

2 classes of runs:

All parameters free.

Discrete fixed,
continuous free.

Groups of fractions marked†‡

are required to sum to 1.

Parameter name Domain
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Breeder fraction† [0, 1]
Breeder 6Li enrichment fraction [0, 1]
Breeder material {Li2TiO3, Li4SiO4}
Breeder packing fraction [0, 1]
Coolant fraction† [0, 1]
Coolant material {D2O,H2O,He}
Multiplier fraction† [0, 1]
Multiplier material {Be,Be12Ti}
Multiplier packing fraction [0, 1]
Structural fraction† [0, 1]
Structural material {SiC, eurofer}
Thickness [0, 500]
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tw
al

l

Armour fraction‡ [0, 1]
Coolant fraction‡ [0, 1]
Coolant material {D2O,H2O,He}
Structural fraction‡ [0, 1]
Structural material {SiC, eurofer}
Thickness [0, 20]



Methodology

Conventional regression task – search for a cheap surrogate f̂ (x) that
minimizes dissimilarity with an expensive function f (x):

Regression performance: mean absolute error, σ of error, R2, R2
adj.

Computational complexity: training & prediction time / sample

2 approaches for surrogate training:

1 Decoupled – trains models from previously generated samples.

2 Adaptive – repeats sampling & model training, increases sampling
density in low-performance regions.



Decoupled Approach



Outline

Compared 9 state-of-the-art surrogate families:

Support vector machines,

Gradient boosted trees,

Extremely randomized trees,

AdaBoosted decision trees,

Gaussian process regression,

k nearest neighbors,

Artificial neural networks (MLP),

Inverse distance weighting,

Radial basis functions.

Performed 4 experiments:

1 Hyperparameter tuning (simplified) – Bayesian optimization,
discrete features fixed & withheld.

2 Hyperparameter tuning – same as #1 but with all features.

3 Scaling benchmark – increase training set size.

4 Model comparison – train surrogates for practical use.



Experiments 1 & 2: Hyperparameter Tuning
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Experiment 1, slice (b)
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Experiment 1, slice (c)
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Experiment 2

Plots show tpred. vs. R2 for 20 best surrogates
per family (top left⇔ fastest, most accurate).

Omitting discrete features yields only a
negligible improvement in performance.

Overall dominated by tree-based surrogates
(GBTs, ERTs) and neural networks.



Experiment 3: Scaling Benchmark

We observe a hierarchy.

Best-performing families from
the previous experiments also
scale the best in tpred..

More samples: neural networks
outperform tree-based models.

Instance-based surrogates
(KNN, IDW) train trivially but
have complex lookup.

Neural networks show inverse
scaling due to parallelization.
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Experiment 4: Model Comparison

Trained 8 models for practical use.

Plots show true vs. predicted TBR by
Models 1, 2 & 4, coloured by density.

Model 1 – best regression performance:
ANN (4-layer MLP), 500K samples.
R2 = 0.998, σ = 0.013,
tpred. = 1.124 µs, 6 916 416× faster.

Model 2 – fastest prediction:†

ANN (2-layer MLP), 500K samples.
R2 = 0.985, σ = 0.033,
tpred. = 0.898 µs, 8 659 251× faster.

Model 4 – smallest training set:†

GBT, 10K samples.
R2 = 0.913, σ = 0.072,
tpred. = 6.125 µs, 1 269 777× faster.

† with acceptable regression performance.
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Adaptive Approach



Adaptive Sampling: Theory

How can we take advantage of
surrogate information content
during training to reduce
sample quantity?

We developed a new technique:

1 Construct surrogate quality
distribution by nearest-
neighbour interpolation.

2 Draw candidate samples
by quality using MCMC.

3 Include samples with
greatest separation from
neighbours.

4 Repeat!



Application on Toy Theory

Toy functional TBR theory with wavenumber n, and qualitatively
comparable ANN performance to Paramak:

TBR =
1
|C|

∑
i∈C

[1 + sin(2πn(xi − 1/2))]

(where C enumerates all continuous variables)

Evaluation set:

Adaptive samples

Generated during runtime

Validation set:

Uniform random samples

Generated independently

Placebo comparison – incremental
uniform-random samples, no MCMC. 0 1
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Adaptive Sampling: Results
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Varied Sampling Scheme for 100000 Initial, 100 Incremental Samples
MAE -- MCMC samples
E_MAE -- MCMC samples
MAE -- uniform random samples
E_MAE -- uniform random samples

60% decrease in MAE for validation set (dashed)
Equivalently, 6% decrease in samples needed for same accuracy



Adaptive Sampling: Results

Fewer incremented samples can lead to better accuracy!
But depends on initial samples, specific model – further study needed.



Conclusion

Decoupled approach:

Tuned and compared surrogates from 9 state-of-the-art families.

Found heuristic: GBTs for < 104 samples, ANNs for > 105 samples.

Fastest found surrogate predicts TBR with standard deviation of
error 0.033 in 0.898 µs, which is 8 · 106× faster than Paramak.

While this used 500K samples, we found surrogates with
comparable properties with as little as 10K samples.

Adaptive approach (on toy theory):

New theoretical approach QASS developed, based on MCMC.

60% decrease in evaluation MAE demonstrated.

6% decrease in expensive TBR samples needed.

Strong potential for further reduction via hyperparameter tuning.

All presented methods portable −→ can be used as cheap
approximation of any simulation or black box function.



Thank you for listening!

Petr Mánek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . petr.manek.19@ucl.ac.uk
Graham Van Goffrier . . . . . . . . . . . .graham.vangoffrier.19@ucl.ac.uk

Further reading:

Single page abstract (available online).

Journal article, currently in internal pre-submission review (available online):
Fast Regression of the Tritium Breeding Ratio in Fusion Reactors.

Industry group project final report (available online).

All models, plots, training data, source code and technical documentation.
https://github.com/ucl-tbr-group-project

mailto:petr.manek.19@ucl.ac.uk
mailto:graham.vangoffrier.19@ucl.ac.uk
https://github.com/ucl-tbr-group-project/documentation/raw/pinboards-submitted/elevator_pitch/elevator_pitch.pdf
https://github.com/ucl-tbr-group-project/documentation/raw/pinboards-submitted/paper/ucl_tbr_paper.pdf
https://github.com/ucl-tbr-group-project/documentation/raw/pinboards-submitted/paper/ucl_tbr_paper.pdf
https://github.com/ucl-tbr-group-project/documentation/raw/published/final_report/tbr_final_report.pdf
https://github.com/ucl-tbr-group-project
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